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SUMMARY 
A new method is introduced to solve potential flow problems around axisymmetric bodies. The approach 
relies on expressing the infinite series expansion of the Laplace equation solution in terms of a finite sum 
which preserves the Laplace solution for the potential function under a Neumann-type boundary condition. 
Then the coefficients of the finite sum are calculated in a least squares approximation sense using the 
GramSchmidt orthonormalization method. Sample benchmark problems are presented and discussed in 
some detail. The solutions are accurate and converged faster when a rather small number of terms werejsed. 
The method is simple and can be easily programmed. 
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1. INTRODUCTION 

Calculation of the potential flow around axisymmetric bodies is very important since most of 
practical shapes are axisymmetric or nearly so, e.g. airships, submarines, torpedos, etc. Also, in 
viscous flow situations the solution of the boundary layer equations requires the pressure 
distribution outside the boundary layer, which can be precisely calculated from the potential flow 
solution. In addition, the actual lift can be calculated with reasonable accuracy by solving the 
potential flow, unless the flow is separated. 

In this study a new method has been introduced for the solution of potential problems around 
axisymmetric bodies. In two-dimensional potential flow situations both the streamfunction and 
potential function satisfy the Laplace equation and can therefore be treated entirely by complex 
variable methods. Although axisymmetric bodies involve only two variables, only the potential 
function satisfies the Laplace equation. Therefore the flow field is not Laplacian and the method 
of employing analytic functions of complex variables cannot be used. 

One of the best known methods for potential flows around axisymmetric bodies was developed 
by von Karman’ in which sources/sinks with constant strength for each element are distributed 
along the axis of the body. The strengths of the elements are determined from the condition of 
zero streamfunction over the body. However, in this method the resulting system of linear 
equations is generally ill-conditioned. Zedan and Dalton’. developed the von Karman method 
by varying the strength of the sources linearly for each element. Their method converged faster 
and produced more stable and accurate results than von Karman’s. 

Another approach is the surface singularity distribution. The use of sources distributed over the 
surface of the body leads to an integral equation of Fredholm’s second kind for which a solution 
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always exists. Comprehensive reviews of the solution of potential flow problems using the surface 
singularity method are given by H e ~ s . ~ , ~  

James6 developed a general analytical method for axisymmetric potential flows. In his method 
the flow field is represented as a sequence of analytical functions (Fourier, Chebyshev, Legendre, 
etc.). 

Campbell' combined axial source and least squares methods for calculating potential flows 
over simple surfaces. Dasgupta' used a finite element method in the solution of potential flows. 
The exterior region was confined to an infinite assembly of geometrically similar finite element 
cells. A technique which uses a substructuring scheme over an infinite collection of finite elements 
was described. 

2. PROBLEM STATEMENT AND THE METHOD 

It is known that the potential function satisfies the Laplace equation for potential flow over 
bodies: 

V24=0  in D. (1) 
The normal component of the fluid velocity must vanish on the impervious surface of the 

boundary. Thus 

where n is the unit outward normal vector of the surface. A regularity condition 

I grad 4 1 + 0. 

(2) 

at infinity is 

(3) 
Since the bodies taken into consideration are axisymmetric, the potential function has two 

variables (r, 0). The potential function can be represented by a combination of those of uniform 
flow and a disturbance function T(r, 0) such that 

4(r, O)=UrcosO+T(r, e), (4) 

V2T(r, e ) = O  in D, (5)  

(6) 

The general solution of the Laplace equation for the exterior region of an axisymmetric body is 

(7) 

where U is the upstream fluid velocity. Therefore equations (1) and (2) take the form 

aT(r, 0) d(Urcos 0) 
an an 

on S. - -- 

given as9 
A, 

where P,, are Legendre polynomials of order n and A, are coefficients to be determined. 
Here we introduce our method in which we propose the solution to be of the form 

T(r, e)= 1 n+l P,(cose) (o<e<n), 
,=o r 

M 

where D, are coefficients to be determined and Fn(r, 0) is taken as 
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It should be noted that with the help of 

Fn(r, 0) has the same form as equation (8). Equation (9) can be analytically integrated easily. If this 
is done, a recursive relation can also be obtained. Therefore, if we let 

R (  f )  = J( f 2  - 2rfcos 8 + r2) ,  

R(L) + L + r cos 8 
R(-L)-L+rcosd 

Fo(r,  0) =In 

F,(r ,d)=R(L)-R(-L)-rcosd Fo(r ,d) ,  (12) 
1 
m Fm(r, d) = ~ [Lm-  lR(L)  - (- L)"- ' R (  - L) - (2m - 1)r cos d F,- (r ,  d )  

-(m- l ) r 2 F m - 2 ( r ,  d ) ] ,  m 2 2 .  (13) 
If we let 

where 0 = a(r, 0) is the surface equation of the body and rg is the radial vector of the surface of the 
body, then the boundary condition can be expressed as 

In order to find the coefficients D,, an orthonormal set of linear combinations of functions 
t,b0, $',. . . , t,hn,. . . is to be produced. The Gram-Schmidt orthonormalization process is 
employed: O 

Yo = ko $0 ? 

Y1 = k l ( $ l - ~ l , o $ o ) ~  

Y 2  = k2($2  -%o $0 -%, 1 $I)? 

such that the set of y o ,  yl, y2, . . . , yn is orthonormal, i.e. 
r n  

where 6,, is the Kronecker delta function. 

process such that 
The constants k,, k , ,  . . . and c ( ~ , ~ ,  L X ~ , ~ ,  aZ, 1 ,  . . . are determined by the orthonormalization 

un,m=j :  $n(e)Yrn(d) (18) 
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Since the orthonormal set of the functions yo ,  yl, y z ,  . . . is the linear combination of 
I ) ~ ,  t,h2,. . . , equation (15) can be written 

Since the +,, are orthonormal, the coefficients An can be determined easily from 

An= ji n(o)Yn(o) do. 

The coefficients Dn are found from the relation 

where the a, are found from 

if i = n ,  

3. RESULTS AND DISCUSSION 

The study includes four benchmark problems. The first three are ellipsoids of revolution with 
slimness ratios @/a) of 0.5, 0.25 and 0.125. These benchmark problems are recognized to be a 
severe test of very slender bodies; also, the exact solutions are available. The last benchmark 
problem is a slender body (profile geometry F-573). 

In this study the effect of L on the solution and the number of terms to be used were analysed. 
In Figures 1 and 2 the effect of L on ellipsoids of revolution with slimness ratios of 0.5 and 025 is 
depicted respectively. As can be seen, the effect of L in Figure 1 is less pronounced. One has the 
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Figure 1. Effect of the parameter L on the velocity profile for a slimness ratio of 0 5  



POTENTIAL FLOW AROUND AXISYMMETRIC BODIES 

0.4 - 

0.2 - 

0.0 

1175 

1 1  terms used 

I r r 1 ,  I I I 1  I I I r I I I I !  I I t 1  I 1  v ( 1  1 1  I T ,  I I I I 1  I 1  

1.2 1.4  ~ 

Figure 2. Effect of the parameter L on the velocity profile for a slimness ratio of 0.25 

freedom of choosing a wide range of Gvalues without compromising the accuracy of the solution. 
However, for an Gvalue of 0.5 oscillations in the solution are observed. It should also be noted 
that the solution has converged for the number of terms used in both cases ( I  1 terms). In Figure 2 
the slimness ratio is smaller and poses an even more severe test on the effect of the parameter L. 
Here it is seen that the freedom in choosing the L-value is more restricted. When the L-value is 
chosen close to unity (in this case), the solution converges well to the exact solution. For example, 
even for an L-value of 0 9  in Figure 2 severe oscillations are observed. In our benchmarks we 
scaled the geometries to the range - 1 < x < 1, but we must state that FJr, 8) can also be chosen as 

where a and b are the lower and upper x-limits of the body. 
In Figure 3 the solutions of the ellipsoid of revolution benchmark problems for the slimness 

ratios 0.5, 0.25 and 0.125 are shown. These solutions were obtained with L=O.99 and 15 terms 
were used. The solutions match well with the exact solutions so that the exact solutions cannot be 
differentiated. Thus only our solutions are displayed. 

In Figure 4 the solutions for the profile geometry of body F-57 are compared. The calculated 
velocity distribution and the prescribed velocity distribution show very good agreement. In this 
problem an L-value of 0.99 and 15 terms were used. The increase in the number of terms has not 
improved the solution to the extent desired. The effect of the L-value is also very severe in this 
benchmark problem. Therefore the L-value was chosen as L=0.99. For lower values of L 
oscillations are observed. 
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Figure 3. Velocity profiles for ellipsoids of revolution with various slimness ratios 
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Figure 4. Velocity profile for profile geometry of body F-57 
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For all the problems the use of 10 or more terms gives convergence to a solution, while with a 
smaller number of terms the solution does not converge and displays oscillating behaviour. 

4. CONCLUDING REMARKS 

A new approach to the solution of potential flow around axisymmetric bodies is introduced. The 
method is very simple and easily programmable. The computation time with this method is much 
less than with other available methods. The computation time for the benchmark problems 
solved was of the order of a few seconds with an IBM PC-XT compatible machine (8 MHz). The 
L-value when chosen very close to the tails of the bodies assures a correct solution provided that a 
sufficient number of terms are used. The method itself should be studied in more detail for 
different geometries. 

APPENDIX: NOMENCLATURE 

potential function 
domain of the body 
normal vector of the surface 
upstream fluid velocity 
disturbance function 
radial co-ordinates 
surface of the body 
Legendre functions of degree n 
equation of the surface 
radial vector of the surface of the body 
functions defined by equation (9) 
a dummy variable used in equation (10) 
a dummy integration variable used in equation (9) 
bounds of the region 
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